Author: Dan DeGrendel

Regardless of industry or discipline, we can probably all agree that routine maintenance — sometimes referred to as preventative, predictive, or even scheduled maintenance — is a good thing. Unfortunately, through the years I’ve found that most companies don’t have the robust strategies they need.

Typical issues and the kinds of trouble they can create:

service engineer worker at industrial compressor refrigeration s1. Lack of structure and schedule

In many cases, routine tasks are just entries on a to-do list of work that needs to be performed — with nothing within the work pack to drive compliance. In particular, a list of tasks beginning with “Check” which have no guidance of an acceptable limit can have limited value. The result can be a “tick and flick” style routine maintenance program that fails to identify impending failure warning conditions.

2. Similar assets, similar duty, different strategies

Oftentimes, maintenance views each piece of equipment as a standalone object, with its own unique maintenance strategy. As a result, one organization could have dozens of maintenance strategies to manage, eating up time and resources. In extreme cases, this can lead to similar assets having completely different recorded failure mechanisms and routine tasks, worded differently, grouped differently and structured differently within the CMMS.

3. Operational focus 

Operations might be reluctant to take equipment out of service for maintenance, so they delay or even cancel the appropriate scheduled maintenance. At times this decision is driven by the thought that the repair activity is the same in a planned or reactive manner. But experience tells us that without maintenance, the risk is even longer downtime and more expensive repairs when something fails.

4. Reactive routines

Sometimes, when an organization has been burned in the past by a preventable failure, they overcompensate by performing maintenance tasks more often than necessary. The problem is, the team might be wasting time doing unnecessary work — worse still it might even increase the likelihood of future problems, simply because unnecessary intrusive maintenance can increase the risk of failure.

5. Over-reliance on past experience 

There’s no substitute for direct experience and expertise. But when tasks and frequencies are too solely based on opinions and “what we’ve always done” — rather than sound assumptions — maintenance teams can run into trouble through either over or under maintaining. Without documented assumptions, business decisions are based on little more than a hunch. “Doing what we’ve always done” might not be the right approach for the current equipment, with the current duty, in the current business environment (and it certainly makes future review difficult).

6. Failure to address infrequent but high consequence failures 

Naturally, routine tasks account for the most common failure modes. They should however also address failures that happen less frequently, but may have a significant impact on the business. Developing a maintenance plan which addresses both types, prevents unnecessary risk. For example, a bearing may be set up on a lubrication schedule, but if there’s no plan to detect performance degradations due to a lubrication deficiency, misalignment, material defect, etc then undetected high consequence failures can occur.

7. Inadequate task instructions

Developing maintenance guidelines and best practices takes time and effort. Yet, all too often, the maintenance organization fails to capture all that hard-won knowledge by creating clear, detailed instructions. Instead, they fall back on the maintenance person’s knowledge — only to lose it when a person leaves the team. Over time, incomplete instructions can lead to poorly executed, “bandaid-style” tasks that get worse as the months go by.

8. Assuming new equipment will operate without failure for a period of time

There’s a unique situation that often occurs when new equipment is brought online. Maintenance teams assume they have to operate the new equipment first to see how it fails before they can identify and create the appropriate maintenance tasks. It’s easy to overlook the fact that they likely have similar equipment with similar points of failure. Their data from related equipment provides a basic foundation for constructing effective routine maintenance.

9. Missing opportunity to improve

If completed tasks aren’t reviewed regularly to gather feedback on instructions, tools needed, spare parts needed, and frequency; the maintenance process never gets better. The quality or effectiveness of the tasks then degrade over time and, with it, so does the equipment.

10. Doing what we can and not what we should 

Too often, maintenance teams decide which tasks to perform based on their present skill sets — rather than equipment requirements. Technical competency gaps can be addressed with a training plan and/or new hires, as necessary, but the tasks should be driven by what the equipment needs.

Without a robust routine maintenance plan, you’re nearly always in reactive mode — conducting ad-hoc maintenance that takes more time, uses more resources, and could incur more downtime than simply taking care of things more proactively. What’s worse, it’s a vicious cycle. The more time maintenance personnel spend fighting fires, the more their morale, productivity, and budget erodes. The less effective routine work that is performed, the more equipment uptime and business profitability suffer.  At a certain point, it takes a herculean effort simply to regain stability and prevent further performance declines.

Here’s the good news: An optimized maintenance strategy, constructed with the right structure is simpler and easier to sustain. By fine-tuning your approach, you make sure your team is executing the right number and type of maintenance tasks, at the right intervals, in the right way, using an appropriate amount of resources and spare parts. And with a framework for continuous improvement, you can ultimately drive towards higher reliability, availability and more efficient use of your production equipment.

Want to learn more? Check out our next blog in this series, Plans Can Always Be Improved:  Top 5 Reasons to Optimize Your Maintenance Strategy.

rel101_web-banner

Author: Dan DeGrendel

Maintenance optimization doesn’t have to be time-consuming or difficult. Really it doesn’t. Yet many organizations simply can’t get their maintenance teams out of a reactive “firefighting mode” so they can focus on improving their overall maintenance strategy. Development And Growth

Stepping back to evaluate and optimize does take time and resources, which is why some organizations struggle to justify the project. They lack the data and/or the framework to demonstrate the real, concrete business value that can be gained.

And even when organizations do start to work on optimization, sometimes their efforts stall when priorities shift, results are not immediate and the overall objectives fade from sight.

If any of these challenges sound familiar, there are some very convincing reasons to forge ahead with maintenance optimization:

1. You can make sure every maintenance task adds value to the business

Through the optimization process, you can eliminate redundant and unnecessary maintenance activities, and make sure your team is focused on what’s really important. You’ll outline the proper maintenance tasks, schedules and personnel assignments; then incorporate everything into the overall equipment utilization schedule and departmental plans to help drive compliance. Over time, an optimized maintenance strategy will save time and resources — including reducing the hidden costs of insufficient maintenance (production downtime, scrap product, risks to personnel or equipment and expediting and warehousing of spare parts, etc.).

2. You’ll be able to plan better

Through the optimization process, you’ll be allocating resources to various tasks and scheduling them throughout the year. This gives you the ability to forecast resource needs, by trade, along with spare parts and outside services. It also helps you create plans for training and personnel development based on concrete needs.

3. You’ll have a solid framework for a realistic maintenance budget

The plans you establish through the optimization process give you a real-world outline of what’s needed in your maintenance department, why it’s needed, and how it will impact your organization. You can use this framework to establish a realistic budget with strong supporting rationales to help you get it approved. Any challenges to the budget can be assessed and a response prepared to indicate the impact on performance that any changes might make.

4. You’ll just keep improving

Optimization is a project that turns into an ongoing cycle of performing tasks, collecting feedback and data, reviewing performance, and tweaking maintenance strategies based on current performance and business drivers.

5. You’ll help the whole business be more productive and profitable

Better maintenance strategies keep your production equipment aligned to performance requirements, with fewer interruptions. That means people can get more done, more of the time. That’s the whole point, isn’t it?

Hopefully, this article has convinced you of the benefits of optimizing your maintenance strategies. Ready to get started or re-energize your maintenance optimization project? Check out our next blog article, How To Optimize Your Maintenance Strategy: A 1,000-Foot View.

rcm201_web-banner

Author: Dan DeGrendel

Optimizing your maintenance strategy doesn’t have to be a huge undertaking. The key is to follow core steps and best practices using a structured approach. If you’re struggling to improve your maintenance strategy — or just want to make sure you’ve checked all the boxes — here’s a 1000-foot view of the process.

1. Sync up

  • Identify key stakeholders from maintenance, engineering, production, and operations — plus the actual hands-on members of your optimization team.
  • Get everybody on board with the process and trained in the steps you’re planning to take.  A mix of short awareness sessions and detailed educations sessions to the right people are vital for success.
  • Make sure you fully understand how your optimized maintenance strategies will be loaded and executed from your Computer Maintenance Management System (CMMS)

2. Organize

  • Review/revise the site’s asset hierarchy for accuracy and completeness. Standardize the structure if possible.
  • Gather all relevant information for each piece of equipment.
    • Empirical data sources: CMMS, FMEA (Failure Mode and Effects Analysis) studies, industry standards, OEM recommended maintenance
    • Qualitative data sources: Team knowledge and past records

3. Prioritize

  • Assign a criticality level for each piece of equipment; align this to any existing risk management framework
  • Consider performing a Pareto analysis to identify equipment causing the most production downtime, highest maintenance costs, etc.
  • Determine the level of analysis to perform on each resulting criticality level

4. Strategize

  • Using the information you’ve gathered, define the failure modes, or apply an existing library template. Determine existing and potential modes for each piece of equipment
  • Assign tasks to mitigate the failure modes.
  • Assign resources to each task (e.g, the time, number of mechanics, tools, spare parts needed, etc.)
  • Compare various options to determine the most cost-effective strategy
  • Bundle selected activities to develop an ideal maintenance task schedule (considering shutdown opportunities). Use standard grouping rules if available.

This is your proposed new maintenance strategy.

5. Re-sync

  • Review the proposed maintenance strategy with the stakeholders you identified above, then get their buy-in and/or feedback (and adjust as needed)

6. Go!

  • Implement the approved maintenance strategy by loading all of the associated tasks into your CMMS — ideally through direct integration with your RCM simulation software, manually, or via Excel sheet loader.

7. Keep getting better

  • Continue to collect information from work orders and other empirical and qualitative data sources.
  • Periodically review maintenance tasks so you can make continual improvements.
  • Monitor equipment maintenance activity for unanticipated defects, new equipment and changing plant conditions. Update your maintenance strategy accordingly.
  • Build a library of maintenance strategies for your equipment.
  • Take what you’ve learned and the strategies and best practices you’ve developed and share them across the entire organization, wherever they are relevant.

Of course, this list provides only a very high-level view of the optimization process.

If you’re looking for support in optimizing your maintenance strategies, or want to understand how to drive ongoing optimization, ARMS Reliability is here to help.

rbd201_web-banner

Author: Philip Sage, CMRP, CRL

Traditionally, SAP is populated with Master Data with no real consideration of future reliability improvement. Only once that maintenance is actually being executed does the real pressure of any under performing assets drive the consideration of the reliability strategy. At that point the mechanics of what’s required for ongoing reliability improvement, based upon the SAP Master Data structure, is exposed and, quite typically, almost unviable. ???????????????????????????????????????????????????????????????????????????

The EAM system is meant to support reliability. Getting your EAM system to support reliability requires some firm understanding of what must happen. If we look a little closer at reliability and the phases of life of an asset, we can see why the EAM settings must vary and not be fixed.

The initial reliability performance of any system is actually determined by its design and component selection.

This is probably not a big surprise for anyone close to reliability, but it may spark some debate from those who have not heard this before.

As evidence to support this statement, a newly commissioned and debugged system should operate nearly failure free for an initial period of time and only become affected by chance failures on some components. An even closer inspection can show that during this period, we can expect that most wear out failures would be absent after a new machine or system is placed into service. During this “honeymoon period” preventative replacement is actually not necessary nor would an inspection strategy provide benefit until such time as wear (or unpredictable wear) raises the possibility of a failure. Within this honeymoon period the components of the system behave exponentially and fail due to their individual chance failures only. They should only be replaced if they actually fail and not because of some schedule. Minor lubrication or service might be required, but during this initial period, the system is predominantly maintenance free and largely free from failure.

Here is where the first hurdle occurs.

After the initial period of service has passed, then it is reasonable to expect both predictable and unpredictable forms of wear out failures to gradually occur and increase in rate, as more components reach their first wear out time.

Now if repair maintenance (fixing failures) is the only strategy practiced, then the system failure rate would be driven by the sporadic arrivals of the component wear out failures, which will predictably rise rather drastically, then fluctuate wildly resulting in “good” days followed by “bad” days. The system failure rate driven by component wear out failures, would finally settle to a comparatively high random failure rate, predominantly caused by the wear out of components then occurring in an asynchronous manner.

With a practice heavily dependent upon repair maintenance, the strength of the storeroom becomes critical, as it makes or breaks the system availability which can only be maintained by fast and efficient firefighting repairs. The speed at which corrective repairs can be actioned and the logistical delays encountered, drive the system availability performance.

From this environment, “maintenance heroes” are born.

As the initial honeymoon period passes, the overall reliability the system becomes a function of the maintenance policy, i.e. the overhaul, parts replacement, and inspection schedules.

The primary role of the EAM is to manage these schedules.

The reduction or elimination of predictable failures is meant to be managed through preventative maintenance tasks, housed inside the EAM that counter wear out failures. Scheduled inspections help to counter the unpredictable failure patterns of other components.

If the EAM is properly configured for reliability, there is a tremendous difference in the reliability of a system. The system reliability becomes a function of whether or not preventative maintenance is practiced or “only run to failure then repair” maintenance is practiced. As a hint: the industry wide belief is that some form of preventative practice is better than none at all.

Preventative maintenance is defined as the practice that prevents the wear failure by preemptively replacing, discarding or performing an overhaul to “prevent” failure.  For long life systems the concept revolves around making a minimal repair that is made by replacement of the failed component, and resulting in the system then restored to service in “like new” condition. Repair maintenance was defined as a strategy that waits until the component in the system fails during the system’s operation.

If the EAM is not programmed correctly or if the preventative tasks are not actioned, then the reliability of a system can fall to ridiculously low levels, where random failures of components of the recoverable system, plague the performance and start the death spiral into full reactive maintenance.

This is quite costly, as in order to be marginally effective the additional requirement is a fully stocked storeroom, which raises the inventory carry costs. Without a well-stocked storeroom, there are additional logistical delays associated with each component, that are additive in their impact on the system availability, and the system uptime, and so system availability becomes a function of spare parts.

An ounce of prevention goes a long way.

Perhaps everything should be put on a PM schedule…? This is actually the old school approach, and I find it still exists in practice all over the world.

The reliability of a system is an unknown hazard and is affected by the relative timing of the preventative task. This timing comes from the EAM in the form of a work order which is supposed to be generated relative to the wear out of the component. How well this task aligns with reality is quite important. If the preventative work order produced by the EAM system comes out at the wrong time, there is a direct adverse effect on system reliability.

EAM systems are particularly good at forecasting the due date of the next work order and creating a work order to combat a component wear out failure. However, wear is not always easily predicted by the EAM and so we see in practice, that not all EAM generated work orders suppress the wear out failures. One reason for this variance is the EAM system work order was produced based on the system calendar time base along with a programmed periodicity that was established in the past to predict the future wear performance.

We don’t always get this right.

As a result we generate work orders for work that is not required, or work that should have been performed before the component failed, not just after the component failed.

Maybe this sounds familiar?

Calendar based forecasts assume wear is constant with time. It is not.

A metric based in operating hours is often a more complete and precise predictor of a future failure. It’s true most EAM systems today allow predictable work to be actioned and released by either calendar time or operating hours and allow other types of time indexed counters to trigger PM work orders.

A key to success is producing the work order just ahead of the period of increased risk to failure due to wear. Whether by calendar or some other counter we call the anticipation of failure, and the work order to combat it, the traditional view of maintenance.

graph

This all sounds simple enough.

The basic job of a reliability engineer is to figure out when something will likely fail based on its past performance and schedule a repair or part change. The EAM functionality is used to produce a work order ahead of the failure, and if that work is performed on-time, we should then operate the system with high reliability.

The reliability side of this conjecture, when combined with an EAM to support, is problematic.

If the work order is either ill-timed from the EAM or not performed on time during the maintenance work execution, there is an increased finite probability that the preventative task will not succeed in its purpose to prevent a failure. Equally devastating, if the PM schedule is poorly aligned or poorly actioned, the general result mirrors the performance expected from a repair maintenance policy, and the system can decay into a ridiculously low level of reliability, with near constant sporadic wear out of one of the many components within the system.

When preventative maintenance is properly practiced so that it embraces all components known to be subject to wear out, a repairable system can operate at high reliability and availability with a very low “pure chance” failure rate and do so for indefinitely long periods of time.

Determining what to put into the EAM is really where the game begins.

FIND OUT MORE AT:

MASTERING ENTERPRISE ASSET MANAGEMENT WITH SAP, 23-26 October 0216, Crown Promenade, Melbourne

Phil Sage will be running a full day workshop “Using SAP with Centralised Planning to Continually Improve RCM Derived Maintenance Strategies” Wednesday 26 October

Come learn what works, and what does not work, as you integrate SAP EAM to support your reliability and excellence initiatives, which are needed to be best in class in asset management. The workshop covers how and where these tools fit into an integrated SAP framework, what is required to make the process work, and the key links between reliability excellence, failure management and work execution using SAP PM.

This question came up during one of our most recent webinars and we thought it raised a very interesting point. Joel Smeby is an experienced reliability engineer who leads our North American engineering team and has helped implement reliability initiatives in many different organizations across a variety of industries. ???????????????????????????????????????????

Here is what Joel had to say about the role of a reliability team as it relates to calculating the cost of downtime:

Reliability is typically not directly responsible for production. But when you look at all of the different areas within an organization (purchasing, spare parts, warehouse, operations, maintenance, safety), Reliability is the one area that should stand across all of them.  The organizational structure may not necessarily be set up in that way, but in terms of being able to talk to people in maintenance, operations, or purchasing and leverage all of that information into a detailed analysis and then make decisions at that level – I think it is Reliability that needs to do that.

I recently worked on a site and went to the operations department to validate their cost of downtime and they weren’t able to give us a solid number. It changed from day to day or week to week and from an organizational perspective it’s very difficult to make decisions based on data when you haven’t defined that number.  As Reliability Engineers we need that downtime number to justify holding spare parts or performing preventive/predictive maintenance tasks.  If Operations has not defined that then I think that a Reliability Engineer is the perfect person to facilitate that discussion.  It can sometimes be a difficult conversation to have, especially if you’re gathering the information from people in upper management.  One strategy is to help people understand why you’re gathering that information and how it will be used.  Justifying maintenance and reliability decisions is all about balancing the cost of performing maintenance against the cost of downtime in order to get the lowest overall cost of ownership.  The managers who have a budget responsibility that includes both maintenance and operations will typically appreciate this approach in finding the lowest cost to the organization.

Some organizations are able to determine the cost of downtime as a $/hour.  This is done in the most basic sense by taking the annual profit that the equipment is responsible for and dividing by the number of hours the equipment runs each year (8,760 hours for continuous operation).  A deeper level of analysis may be required in more complex operations such as batch processes.

The traditional view of a maintenance strategy is that the level of effort put in to preventing a failure is dependent on the type and size of equipment.  The reliability based approach understands the cost of downtime, and therefore the equipment’s importance.  This enables the maintenance strategy to be optimized to the overall lowest cost for the organization.

Join the conversation in our reliability discussion group on LinkedIn

The Age of Renewables 

Assets_Landsvirkjun_article_thumbnail

Click to download

Landsvirkjun is Iceland’s largest producer of electricity, and one of the 10 largest renewable energy companies in Europe. Its power infrastructure is ranked among the World’s best and most reliable—an important competitive advantage that allows the company to attract and retain industrial clients like Alcoa, Rio Tinto Alcan and others. With its asset base both growing and aging, Landsvirkjun was outgrowing its existing asset management systems and needed a more robust approach to investment decision making and long-term planning.

In this case study from the December 2015 issue of Assets magazine, ARMS Reliability’s partner in Asset Investment Planning and Management—Copperleaf Technologies—describes the journey the company took to implement C55, and the benefits they’ve achieved.

READ CASE STUDY

ARMS Reliability and Copperleaf Technologies are partners in delivering asset intensive industries in the Australian and New Zealand Markets with cutting edge solutions in the area of Asset Investment Planning and Management (AIPM).  Under this partnership agreement, ARMS Reliability acts as the distributor for Copperleaf’s AIPM solution, C55, and provides implementation services and on-going support for the C55 product in the ANZ region. 

Click here for more information about Copperleaf and C55.

 

By: Gary Tyne CMRP, CRL

Engineering Manager – ARMS Reliability Europe

Working for a global organization has taken me to some weird and wonderful places around the world. Different cultures, traditions, religions and people certainly enlightens you to the wonderful and colorful place we all call home.

I would say in most of these countries I have at some stage taken a taxi or at least been chauffeured by a driver in a customer’s company vehicle. These experiences have led to some interesting conversations on life, travel, politics, and football with some very knowledgeable and diverse taxi drivers. On the other hand, I have had drivers that have not spoken a word and have just delivered me to my destination in silence, even after trying to engage in conversation, their chosen dialogue is nil speak. bigstock--131191391

A recent taxi encounter occurred when I had just left my customer and was going to call for a taxi, when I spotted someone being dropped off at my current location. I asked the driver if he could take me to Dublin airport and he obliged.

This is when I met Mohammed, an immigrant from Kenya who had moved to Ireland 17 years ago. He was smiling and cheerful and had a generally happy persona about him. We discussed weather in Ireland versus Mombasa, we mentioned football briefly, and then we started to discuss cars. This occurred when a brand new Mercedes went past us in the fast lane and I passed comment on what a beautiful car that was.

Mohammed started to discuss the Toyota Corolla in which we were driving and how he loved his car for its level of reliability. I asked how many miles his vehicle had driven and he pointed out that he had covered over 300,000 miles since he purchased the car brand new in Northern Ireland. He went onto explain how he ensured that it was regularly maintained to a high standard with the best quality oil and original OEM parts being used when any replacements were required. The engine and gearbox were original and providing ‘you look after your car, it will look after you.’ Mohammed was proud of the length of service he had achieved from his vehicle and that the car had never let him down. However, as the vehicle operator he recognized the importance of regular maintenance and the use of the right quality parts. He also said that he only allowed one mechanic to work on his vehicle because he was very skilled and competent at his job and could not trust others to do work on his taxi.

Mohammed was also proud to be a taxi driver in Ireland and combined with his ‘Reliability’ story certainly made the trip to Dublin airport a memorable one. Mohammed did not know my job role and that I had spent over 30 years in Maintenance and Reliability, but he gave me a text book account of what is ‘Reliability’! I said goodbye to Mohammed after he let me take a picture of his mileage and car. I wished him luck and many more years of happy motoring in his reliable Toyota motor vehicle.

Sitting in the departure lounge my trip to the airport and conversation with Mohammed certainly made me think: mileage

  • Do we see this level of passion and ownership amongst today’s industrial operators?
  • Should Operators take more care for their assets, ensuring high reliability through a program of basic care?
  • How do we ensure the right levels of competence in our technicians?
  • How do we ensure that the correct specification and quality of parts are being purchased?
  • How do we ensure that maintenance is being performed at the right frequency on the right asset?

This ‘Reliability Tale from the Taxi’ may have also generated further questions in your own mind, for me, it provided me with  another great ‘Reliability’ story that I can share during one of our global reliability training courses.

 

As its name suggests, an “asset” is a useful or valuable thing. Indeed, the antonym of “asset” is “liability”. Hence, an organization’s assets should deliver value; not cost money. With the right techniques and strategies in place, asset managers can ensure that their plant and equipment is performing at and being maintained at optimum levels. These many and varied techniques can be applied across the different phases of an asset’s life to ensure that,  instead of draining money from the bottom line, it actively contributes to margin increases. F

Managed the right way, assets can contribute significantly to profit margins. It takes a strategic approach to maintenance and asset management, in key areas such as:

  1. Increasing availability and plant capacity
  2. Reducing unnecessary maintenance costs
  3. Reducing unnecessary spares holding costs
  4. Planning optimum retirement of plant and equipment

Once you determine a key focus area, it’s important to apply the right technique.

Margin Increase Techniques

System Analysis

The primary objective of System Analysis is to identify and eliminate bottlenecks in a system, and is particularly useful in complex operations where the contribution of different parts of the system are not clear. An analyst performing System Analysis builds a representative model using reliability block diagrams, and runs a simulation to produce a quantitative view of the contribution of all parts of a system. The technique is used to assess the reliability of individual components and their dependencies on other events or assets in order to assess the overall availability of the system. This helps to determine the importance of each element, so that the analyst can play “what if” with different levels of redundancy, size of buffers, maintenance strategies, and spares holding levels, in order to find the optimum.

Maintenance Benefit Analysis

Unfortunately, there has been a long tradition of organizations fostering a culture of maintenance in which the maintenance crews are lauded as heroes when they step in to fix things that are broken. In such cultures, preventative maintenance is less appreciated, despite it being proven to save money. Maintenance Benefit Analysis – similar to Maintenance Optimization– is used to evaluate a maintenance plan and identify any areas where maintenance is either not needed or is not optimal. A Maintenance Benefit Analysis is used to identify where alternatives to current practice can be improved by choosing a different type of strategy or frequency.

Spares Optimization

Typically, maintenance crews love spares and want lots of them in their plant or facility. Yet plant managers resent having too many spares in stock as they tie up capital and take up storage space. Spares Optimization is all about finding the optimum level of spares to hold; a level that balances the cost of not having spares available against the cost of holding the spares in stock.

Repair vs Replace Analysis

Knowing when to replace a piece of equipment shouldn’t be guesswork, as the right time to replace can save hundreds of thousands of dollars in repairs. Repair vs Replace Analysis is used to predict or track the costs of repairs against the cost of replacement. As the cost of repairs increases (which incorporates costs like labor and parts), it becomes less viable to maintain the asset. Plus, as the cost of new equipment falls, it becomes more viable to buy it new. Life Cycle Cost analysis can be applied to assess the optimum point to switch from repair-mode to replace-mode.

ARMS Reliability can show you how to achieve great cost savings and margin increases across the whole organization by using these techniques and their associated software tools; and will train your team to implement and manage these changes proactively.

In most cases, there is much to gain by working through maintenance strategy optimization. To identify where your company’s maintenance strategy sits on the spectrum, you can perform a simple self-assessment that looks for the most common symptoms, which are described in detail in our guide “5 Symptoms Your Maintenance Strategy Needs Optimizing.” If the symptoms are evident, then there is a strong business case to invest in maintenance strategy optimization. The primary question in diagnosing the health of your maintenance strategy is a simple one. Does your maintenance strategy need optimizing? Ideally, your maintenance strategy is already optimized. Perhaps it was, but is in need of a tune-up. Or, as is the case in many companies, maybe you are experiencing endemic symptoms that lead to: M

  • Recurring problems with equipment.
  • Budget blow-outs from costly fixes to broken equipment.
  • Unplanned downtime that has a flow-on effect on production.
  • Using equipment that is not performing at 100 percent.
  • Risk of safety and environmental incidents.
  • Risk of catastrophic failure and major events.

To identify where your company’s maintenance strategy sits on the spectrum, you can perform a simple self-assessment that looks for the most common symptoms.

  1. Increase in unplanned maintenance – A sure sign that your maintenance strategy is not working is the simple fact that you are performing more unplanned maintenance, which is caused by an increase in the occurrence of breakdowns.
  2.  Rising maintenance costs – In companies that apply best practice maintenance strategy optimization, total maintenance costs are flat or slightly decreasing month-on-month. These optimized strategies combine preventative tasks with various inspection and root cause elimination tasks which in turn produces the lowest cost solution.
  3. Excessive variation in output – A simple definition of the reliability of any process is that it does the same thing every day. In other words, equipment should run at nameplate capacity day in and day out. When it doesn’t, this is an indication that some portion of the maintenance strategy is misaligned and not fully effective.
  4. Strategy sticks to OEM recommendation -Sticking to the maintenance schedule prescribed by Original Equipment Manufacturers (OEMs) may seem like a good starting point for new equipment. But it’s only that a starting point. There are many reasons why you should create your own optimized maintenance strategy soon after implementation.
  5. An inconsistent approach – Consistency implies lack of deviation. And this implies standardisation. When it comes to maintenance strategies, standardization is essential.

For an in depth look at these symptoms download the complete guide “5 Symptoms Your Maintenance Strategy Needs Optimizing” 

If your maintenance activities have a large proportion of reactive repairs then the costs of maintaining your assets are larger than they need to be, because the cost of performing unplanned maintenance is typically three times the cost of performing maintenance in a planned manner. Furthermore, if your system is reactive, it is a sign that you are not managing failures. Your biggest costs may be catastrophic failure, systemic failure or equipment defects.Proactive x Reactive creative sign with clouds as the background

These major meltdowns or one-off events can cost millions of dollars in reactive repairs, lost production and/or major safety/environmental impacts. If you need to lower the cost of maintenance this is an area you can make a significant impact on the P&L.

Proactive maintenance – which is aimed at avoiding such scenarios – is a much more cost-effective approach.

First, what is reactive maintenance? Put simply, it is any maintenance or repair done to a piece of equipment after a failure event. If a gear-box grinds to a halt and your maintenance team rushes to repair it, they are engaging in reactive maintenance.

While the immediate cost of such maintenance may seem low – a day of labor and the purchase of a new part for the machine – the flow-on costs associated with downtime, lost production can be much higher and there is a greater risk of safety and environmental incidents during the shutting down or starting up of equipment.

In companies where reactive maintenance is a large proportion of work performed, there are many hidden costs carried by the business such as higher inventories; premium rates for purchasing spare parts; higher stocking levels for critical spares; more wasted time queuing for tools, materials, and labor; higher overtime levels; more plant downtime; interruption to customer orders; stockouts; offspec quality.  The organization and management system has a short term, busy focus often under budget pressure, variations in production, and lots of “things to do”.

shutterstock_119233999

On the flip side, proactive maintenance takes a preventative approach. It involves making assets work more efficiently and effectively so that downtime and unexpected failures become a thing of the past. It’s also about trimming unnecessary expenditure from asset management budgets. From a bottom line perspective, it’s about boosting the assets’ contribution to earnings before interest and tax (EBIT).

Strategies associated with proactive maintenance involve understanding and managing the likelihood of failures, some of the common analytical methods to understand the impact of failures on the business include:

  • System Analysis – to understand the way equipment failures can impact the availability and production capacity of a system; it allows the analyst to identify and eliminate potential bottlenecks in a system, and thus increase plant capacity
  • Criticality Analysis – to rank equipment by the likelihood and severity of failure impact on key business objectives, so you can then channel maintenance resources into the more critical pieces of equipment
  • Maintenance Benefit Analysis – to evaluate a maintenance plan and identify areas where maintenance is either not needed or not optimal.
  • Spares Optimization – to find the optimum level of spares to hold in-stock, which balances the cost of not having spares available versus taking up storage space on-site
  • Repair Vs Replace Analysis – to predict or track the cost of repairs against the cost of replacement, so it becomes clear when to replace assets for best value
  • Root Cause Analysis – to analyze the root cause of failures and focus resources on eliminating their reoccurrence, not just fixing the symptoms time and time again.
  • Vulnerability Analysis- to systematically review all aspect of the operation in a way to discover tomorrow’s failure, so it can be eliminated in a planned fashion.

As these strategies attest, proactive maintenance is about much more than building a schedule of ongoing maintenance tasks. By understanding and managing failure the maintenance resources can be directed to those areas that require attention in a planned manner, you can actually save significant amounts of money into the long term.

And, above all, it is important to remember that a culture of reactive maintenance is not ideal. In fact, unplanned reactive maintenance is one of the key symptoms that your maintenance strategy isn’t working.

Learn more by downloading our guide: 5 Symptoms Your Maintenance Strategy Needs Optimizing