Category Archives: Process Reliability

Corporate and site reliability teams face challenges and pressures to continuously improve and demonstrate the value and business impact they have on their organizations.  The old adage of RCM being a “Resource Consuming Monster” has plagued many a Reliability Department – some organizations have even banned the use of the acronym.

Instead, RCM needs to be viewed as an engineering framework that enables the definition of a complete maintenance regime for maintenance task optimization.

Both puaudit_your_rca_program_im-6a80209eb03aca77b25807e308a01367005abbc6blic and private sector organizations around the world rely on reliability centered maintenance as a means to significantly increase asset performance by delivering value to all stakeholders. Successful implementation of RCM will lead to an increase in cost effectiveness, reliability, machine uptime, and a greater understanding of the level of risk that the organization is managing. It can also deliver safer operations, provide a document base for planned maintenance, and predict resource requirements, spares usage, and maintenance budget.

 So, how do you equip your organization for best-practice reliability centered maintenance?

An RCM study determines the optimal maintenance strategy for assets determines by modelling different scenarios and comparing risks and improvements over this lifetime to enable better long-term management of the assets.

At a high level, an RCM Study involves:

Step 1: Developing an FMEA using collected failure data from a variety of sources, such as work order history, spares usage rates, interviews with personnel responsible for maintaining the equipment

Step 2: Combining data with OEM maintenance manuals and spares catalog information to develop a preliminary RCM model

Step 3: Making changes to the preliminary model during facilitation with the staff

Step 4: Validating and optimizing the RCM model by assessing each failure mode by the cost, safety,  environmental and operational contributions to reduce cost and risk

Step 5: Building an maintenance plan that can be uploaded into your CMMS for direct integration of RCM with CMMS

This process will reveal any gaps in the existing maintenance strategy, or conversely deliver peace of mind that existing strategies are working.

Join us at the Reliability Summit, March 26-29, 2019, in Austin, Texas to learn how to manage reliability centered maintenance for your organization.

Attendees will learn: 

  • RCM Skill Building
  • Why Traditional Maintenance cannot meet the needs of business today
  • Weibull Data Analysis
  • What is RCM and how does RCMCost deliver this methodology plus more
  • How to identify failure modes that can impact your plant
  • How to calculate failure data relevant to your equipment using Weibull feature in RCMCost
  • Assessing the total cost impact of failure on a business
  • How Preventive Maintenance and Predictive Maintenance improve business, safety, environment and operational risks
  • Simulating the maintenance strategy in RCMCost
  • RCM Skill Building Continued
  • How to select the optimum maintenance task and frequency
  • Exercises in RCMCost
  • Maintenance Decision making elements and sensitivities

This is one of many workshops attendees can select to attend at the Reliability Summit. For a full list of workshops, please visit our Reliability Summit website.  

 

 

 

Your company is going through an asset management initiative and they need ‘reliability engineers’ to support this new focus.  One day your title begins with ‘Maintenance _____’ and the next day you come into the office and the title on your door now reads ‘Reliability _____’.  Undertaking new asset management initiatives as a newly titled “reliability engineer” can be daunting.

Reliability Engineering isn’t typically something one would go to school for or get a certificate in, so what does an R.E need to know?

Your “toolkit” as an R.E. should consists of various methods that you can employ with the goal of optimizing maintenance strategies to achieve operational success, including:

  • root cause analysis
  • reliability centered maintenance
  • failure modes and effects analysis
  • failure data analysis
  • reliability block diagrams
  • lifecycle cost calculation

To be successful at increasing the reliability of your plant, reliability practitioners should utilize these ‘tools’ that can deliver the best results, applying them based on the type of problem you’re facing.

Approaching Maintenance Strategy Optimization with Your Toolkit

It’s essential for a newly appointed reliability professional to be aware of common maintenance issues. The more time maintenance personnel spend fighting fires, the more their morale, productivity, and budget erodes. The less effective routine work that is performed, the more equipment uptime and business profitability suffer.

Here’s the good news: An optimized maintenance strategy is simpler and easier to sustain than a non-optimized strategy, resulting in fewer issues and downtime. It’s easy for organizations and new reliability engineers to be intimidated by the idea of maintenance strategy optimization. An important tip to remember is that small changes can make a huge difference. Maintenance optimization doesn’t have to be time-consuming or difficult, nor does it have to be a huge undertaking. By creating a framework for continuous improvement and understanding the methods to employ, you can ultimately drive towards higher reliability, availability and more efficient use of your production equipment.

Join us at the Reliability Summit, March 26-29, 2019 in Austin, Texas to learn the essential tools in a Reliability Engineer’s toolkit and how to apply them to achieve operational success.

Attendees will learn: 

  • History of Reliability
  • Introduction to Reliability Concepts
  • Benefits of a Reliability Based Maintenance System
  • Performance Measures
  • Definitions of Terms and Measures in Reliability
  • Introduction to Reliability Engineering Methods
  • Failure Mode and Effects Analysis
  • Failure Data Analysis
  • Reliability Centered Maintenance
  • Maintenance Optimization
  • System Availability Analysis
  • Lifecycle Cost Calculation
  • Problem Reporting
  • What Tool When
  • Key Factors for Success
  • Key Steps in a Reliability Program
  • Summarizing the Business Case for Reliability

This is one of many workshops attendees can select to attend at the Reliability Summit. For a full list of workshops, please visit our Reliability Summit 2019 website.  

 

 

 

 

 

 

 

World-class maintenance performance requires strong maintenance strategy. But all too often, Leadership within the organization isn’t fulling on board with undertaking an optimization project rca_facilitationbecause they don’t yet see the full value in doing so. And, perhaps, you’re not sure exactly how to convince them that the initiative is worthwhile. 

So, how do you raise awareness within the organization and get support for what you need to do? 

You must build a business case that can overcome the primary objections, illuminate the need and demonstrate the real, tangible value that your project will provide to the organization. 

If you are thinking your organization should invest in doing a maintenance review and optimization, then you’re probably experiencing some of the signs:  

  • High production downtime 
  • Maintenance staff in fire-fighting mode 
  • Some spare parts collecting dust, yet key spares are not available when needed 
  • Maintenance instructions consist of little more than a title or some generic text, e.g., “check and lube as necessary”
  • Very little, if any, information captured on maintenance work orders 
  • Scheduled maintenance tasks generally only created after equipment has failed 
  • Costly equipment failures creating budget overruns 
  • Higher risk of catastrophic failure, equipment damage and major events due to potential (or actual) equipment failures
  • Maintenance KPIs are not in place or are trending towards lower performance
  • Maintenance group isn’t highly valued by the rest of the organization 

To get the buy-in you need, you need to consider points of resistance you might encounter from Maintenance, Production, and Site Management teams. Show them how the signs listed above are causing real problems for your organization, build your business case backed by data, and demonstrate how your initiatives will benefit each stakeholder group.  

Join us at the Reliability Summit, March 26-29, 2019, in Austin, Texas to learn in-depth how to build a compelling business case to gain support for your reliability initiatives.  

Attendees will learn: 

  • Potential resistance, fear of change and how the two impact reliability initiatives  
  • Benefits to stakeholders at all levels and how to sell them
  • Necessary steps to build the business case  
  • What analyses and data are required to assess the current state of maintenance and how to use your CMMS to assist   
  • How to explain how each problem affects the business from a maintenance, production, EHS, and business impact  
  • How to develop a project proposal and the key items to be included  
  • What tools to use and how to quantify the additional cost savings to be realized   
  • How to conduct a pilot project and benefits of doing so  

This is one of many workshops attendees can select to attend at the Reliability Summit. For a full list of workshops, please visit our Reliability Summit 2019 website.  

 

 

 How do you know if your plant is designed to deliver the target level of productivity?

For many organizations, their answer is “we don’t know.” New capital projects are  typically designed with the main goals of achieving the lowest possible capital outlay for plant and equipment Oil and gas production slot on the platform, Well head control owhile maintaining the plant’s ability to meet productivity targets. Too often; however, minimizing costs ultimately garners most of the focus in the design phase and as a result plants are handed over to operations teams that simply aren’t designed for reliability. Then the consequences start to appear – High number of failures and breakdowns, no way to achieve better performance from equipment short of a redesign, maintenance costs too high for the plant to be sustainable for the long term.  

To combat this, world-leading organizations are starting to require that a RAMS Analysis (Reliability, Availability, Maintenance, and Safety Analysis) be completed at each project stage. These studies serve as checkpoints with scenario modeling that provides various options to the project team as to how they can meet the business goals of the project at the lowest possible cost. Sophisticated organizations are also incorporating peer reviews to challenge the plant designs and Lifecycle Cost Analysis to evaluate the project over a longer period to predict costs, so they can plan and budget accordingly.  

Case in point… 

Here’s a timeline of how a global mining company built reliability into their design throughout various project stages

  • 2008 – Developed Reliability Block Diagram (RBD) model to validate the design capacity and allow for potential bottlenecks to be understood. Identified that there was a baghouse in the design that could not be isolated and required a complete plant shutdown to perform any maintenance.  Also predicted maintenance budget and labor requirements to understand the maintenance intensive items in the design. Identified multi-million dollar per day single point failure that was addressed in revised re-design that allowed maintenance on baghouse to be completed without plant shutdown.  
  • 2010 – Revised RBD to accommodate some design changes and to validate that the capacity could still be achieved.   
  • 2014 – Revised RBD to accommodate further design changes as project team was challenged to reduce capital cost and increase construction speed. RAM/RBD proved capacity could still be met. Team was challenged to reduce equipment capital by $30M yet keep capacity. Marginal capacity increase resulted and $30M reduction.  
  • 2016 – Revised RBD as more detailed information became available and as further changes were made. Headquarters rubber-stamped project to proceed.  
  • 2017 – Estimate for maintenance build from EPC was 120,000+ man hours. Using ARMS’ libraries, past company models/FMEA’s, and an equipment class strategy approach, we estimate it can take around half of that time and investment to produce maintenance strategies that will help ensure the predicted availability is realized. 

All through the process the mining giant found that the RBD was an essential tool for them when undergoing peer reviews at each project gate.  It was used to confidently assure the board that the capacity targets could be met and that they had a solid foundation on which the budget and resource forecasts were made. 

Join us at the Reliability Summit, March 26-29, 2019 in Austin, Texas to learn in-depth best-practices for designing for reliability. This workshop will cover the benefits of designing for reliability and what that process should look like to ensure a sustainable, successful plant is handed over to Operations.  

Attendees will learn: 

  • How to conduct scenario modelling of the plant design and configuration to ensure the plant meets its availability and production requirements at the lowest cost 
  • How to prevent hidden failures and bottlenecks caused by poor plant design 
  • How to develop budget predictions around availability, capacity, labor needs, spares needs, and maintenance costs 
  • How to build maintenance strategies for projects that help ensure the predicted availability is realized 

This is one of many workshops attendees can select to attend at the Reliability Summit. For a full list of workshops, please visit our Reliability Summit 2019 website.