Tag Archives: Proactive Maintenance

Author: Jason Ballentine

As with any budget, you’ve only got a certain amount of money to spend on maintenance in the coming year. How do you make better decisions so you can spend that budget wisely and get maximum performance out of your facility? ??????????????????????????????????????????????

It is possible to be strategic about allocating funds if you understand the relative risk and value of different approaches. As a result, you can get more bang for the same bucks.

How can you make better budget decisions?

It can be tempting to just “go with your gut” on these things. However, by taking a systematic approach to budget allocation, you’ll make smarter decisions — and more importantly you’ll have concrete rationales for why you made those decisions —  which can be improved over time. Work to identify the specific pieces of equipment (or types of equipment) that are most critical to your business, then compare the costs and risks of letting that equipment run to failure against the costs and risks of performing proactive maintenance on that equipment. Let’s take a closer look at how you can do that.

4 steps to maximize your maintenance budget

1.  Assign a criticality level for each piece of equipment. Generally, this is going to result in a list of equipment that would cause the most pain — be it financial, production loss, safety, or environmental pain — in the event of failure. Perform a Pareto analysis for maximum detail. 

2.  For your most critical equipment, calculate the ramifications of a reactive/run-to-failure approach.

  • Quantify the relative risk of failure. (You can use the RCMCost™ module of Isograph’s Availability Workbench™ to better understand the risk of different failure modes.)
  • Quantify the costs of failure. Keep in mind that equipment failures can affect multiple aspects of your business in different ways — not just direct hard costs. In every case, consider all possible negative effects, including potential risks.
    • Maintenance: Staff utilization, spare parts logistics, equipment damage, etc.
    • Production Impact: Downtime, shipment delays, stock depletion or out-of-stock, rejected/reworked product, etc.
    • Environmental Health & Safety (EHS) Impact: Injuries, actual/potential releases to the environment, EPA visits/fines, etc.
    • Business Impact: Lost revenue, brand damage, regulatory issues, etc.

For a more detailed explanation of the various potential costs of failure, consult our eBook, Building a Business Case for Maintenance Strategy Optimization.

3.  Next, calculate the impact of a proactive maintenance approach for this equipment

  • Outline the tasks that would best mitigate existing and potential failure modes
  • Evaluate the cost of performing those tasks, based on the staff time and resources required to complete them.
  • Specify any risks associated with the proactive maintenance tasks. These risks could include the possibility of equipment damage during the maintenance task, induced failures, and/or infant mortality for newly replaced or reinstalled parts.

4. Compare the relative risk costs between these approaches for each maintenance activity. This will show you where to focus your maintenance budget for maximum return.

When is proactive maintenance not the best plan?

For the most part, you’ll want to allocate more of your budget towards proactive maintenance for equipment that has the highest risk and the greatest potential negative impact in the event of failure. Proactive work is more efficient so your team can get more done for the same dollar value. Letting an item run to failure can create an “all hands on deck” scenario under which nothing else gets done, whereas many proactive tasks can be performed quickly and possibly even concurrently.

That said, it’s absolutely true that sometimes run-to-failure is the most appropriate approach for even a critical piece of equipment. For example, a maintenance team might have a scheduled task to replace a component after five years, but the problem is that component doesn’t really age -— the only known failure mode is getting struck by lightning. No matter how old that component is, the risk is the same. Performing replacement maintenance on this type of component might actually cost more than simply letting it run until it fails. (In these cases, a proactive strategy would focus on minimizing the impact of a failure event by adding redundancy or stocking spares.) But you can’t know that without quantifying the probability and cost of failure.

Side note: Performing this analysis can help you see where your maintenance budget could be reduced without a dramatic negative effect on performance or availability. Alternatively, this analysis can help you demonstrate the likely impact of a forced budget reduction. This can be very helpful in the event of budget pressure coming down from above.   

At ARMS Reliability, we help organizations understand how to forecast, justify and prioritize their maintenance budgets for the best possible chances of success. Contact us to learn more.

Availability Workbench™, Reliability Workbench™, FaultTree+™, and Hazop+™ are trademarks of Isograph Limited the author and owner of products bearing these marks. ARMS Reliability is an authorised distributor of those products, and a trainer in respect of their use.

Author: Dan DeGrendel

Regardless of industry or discipline, we can probably all agree that routine maintenance — sometimes referred to as preventative, predictive, or even scheduled maintenance — is a good thing. Unfortunately, through the years I’ve found that most companies don’t have the robust strategies they need.

Typical issues and the kinds of trouble they can create:

service engineer worker at industrial compressor refrigeration s1. Lack of structure and schedule

In many cases, routine tasks are just entries on a to-do list of work that needs to be performed — with nothing within the work pack to drive compliance. In particular, a list of tasks beginning with “Check” which have no guidance of an acceptable limit can have limited value. The result can be a “tick and flick” style routine maintenance program that fails to identify impending failure warning conditions.

2. Similar assets, similar duty, different strategies

Oftentimes, maintenance views each piece of equipment as a standalone object, with its own unique maintenance strategy. As a result, one organization could have dozens of maintenance strategies to manage, eating up time and resources. In extreme cases, this can lead to similar assets having completely different recorded failure mechanisms and routine tasks, worded differently, grouped differently and structured differently within the CMMS.

3. Operational focus 

Operations might be reluctant to take equipment out of service for maintenance, so they delay or even cancel the appropriate scheduled maintenance. At times this decision is driven by the thought that the repair activity is the same in a planned or reactive manner. But experience tells us that without maintenance, the risk is even longer downtime and more expensive repairs when something fails.

4. Reactive routines

Sometimes, when an organization has been burned in the past by a preventable failure, they overcompensate by performing maintenance tasks more often than necessary. The problem is, the team might be wasting time doing unnecessary work — worse still it might even increase the likelihood of future problems, simply because unnecessary intrusive maintenance can increase the risk of failure.

5. Over-reliance on past experience 

There’s no substitute for direct experience and expertise. But when tasks and frequencies are too solely based on opinions and “what we’ve always done” — rather than sound assumptions — maintenance teams can run into trouble through either over or under maintaining. Without documented assumptions, business decisions are based on little more than a hunch. “Doing what we’ve always done” might not be the right approach for the current equipment, with the current duty, in the current business environment (and it certainly makes future review difficult).

6. Failure to address infrequent but high consequence failures 

Naturally, routine tasks account for the most common failure modes. They should however also address failures that happen less frequently, but may have a significant impact on the business. Developing a maintenance plan which addresses both types, prevents unnecessary risk. For example, a bearing may be set up on a lubrication schedule, but if there’s no plan to detect performance degradations due to a lubrication deficiency, misalignment, material defect, etc then undetected high consequence failures can occur.

7. Inadequate task instructions

Developing maintenance guidelines and best practices takes time and effort. Yet, all too often, the maintenance organization fails to capture all that hard-won knowledge by creating clear, detailed instructions. Instead, they fall back on the maintenance person’s knowledge — only to lose it when a person leaves the team. Over time, incomplete instructions can lead to poorly executed, “bandaid-style” tasks that get worse as the months go by.

8. Assuming new equipment will operate without failure for a period of time

There’s a unique situation that often occurs when new equipment is brought online. Maintenance teams assume they have to operate the new equipment first to see how it fails before they can identify and create the appropriate maintenance tasks. It’s easy to overlook the fact that they likely have similar equipment with similar points of failure. Their data from related equipment provides a basic foundation for constructing effective routine maintenance.

9. Missing opportunity to improve

If completed tasks aren’t reviewed regularly to gather feedback on instructions, tools needed, spare parts needed, and frequency; the maintenance process never gets better. The quality or effectiveness of the tasks then degrade over time and, with it, so does the equipment.

10. Doing what we can and not what we should 

Too often, maintenance teams decide which tasks to perform based on their present skill sets — rather than equipment requirements. Technical competency gaps can be addressed with a training plan and/or new hires, as necessary, but the tasks should be driven by what the equipment needs.

Without a robust routine maintenance plan, you’re nearly always in reactive mode — conducting ad-hoc maintenance that takes more time, uses more resources, and could incur more downtime than simply taking care of things more proactively. What’s worse, it’s a vicious cycle. The more time maintenance personnel spend fighting fires, the more their morale, productivity, and budget erodes. The less effective routine work that is performed, the more equipment uptime and business profitability suffer.  At a certain point, it takes a herculean effort simply to regain stability and prevent further performance declines.

Here’s the good news: An optimized maintenance strategy, constructed with the right structure is simpler and easier to sustain. By fine-tuning your approach, you make sure your team is executing the right number and type of maintenance tasks, at the right intervals, in the right way, using an appropriate amount of resources and spare parts. And with a framework for continuous improvement, you can ultimately drive towards higher reliability, availability and more efficient use of your production equipment.

Want to learn more? Check out our next blog in this series, Plans Can Always Be Improved:  Top 5 Reasons to Optimize Your Maintenance Strategy.

rel101_web-banner